Evaluation of Multiple Clustering Solutions
نویسندگان
چکیده
Though numerous new clustering algorithms are proposed every year, the fundamental question of the proper way to evaluate new clustering algorithms has not been satisfactorily answered. Common procedures of evaluating a clustering result have several drawbacks. Here, we propose a system that could represent a step forward in addressing open issues (though not resolving all open issues) by bridging the gap between an automatic evaluation using mathematical models or known class labels and the actual human researcher. We introduce an interactive evaluation method where clusters are first rated by the system with respect to their similarity to known results and where “new” results are fed back to the human researcher for inspection. The researcher can then validate and refine these results and re-add them back into the system to improve the evaluation result.
منابع مشابه
Experimental Evaluation of Algorithmic Effort Estimation Models using Projects Clustering
One of the most important aspects of software project management is the estimation of cost and time required for running information system. Therefore, software managers try to carry estimation based on behavior, properties, and project restrictions. Software cost estimation refers to the process of development requirement prediction of software system. Various kinds of effort estimation patter...
متن کاملMulti-objective evolutionary algorithms for data clustering
In this work we investigate the use of Multi-Objective metaheuristics for the data mining task of clustering. We first investigate methods of evaluating the quality of clustering solutions, we then propose a new Multi-Objective clustering algorithm driven by multiple measures of cluster quality and then perform investigations into the performance of different Multi-Objective clustering algorith...
متن کاملA Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach
In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...
متن کاملIntelligent Health Evaluation Method of Slewing Bearing Adopting Multiple Types of Signals from Monitoring System
Slewing bearing, which is widely applied in tank, excavator and wind turbine, is a critical component of rotational machine. Standard procedure for bearing life calculation and condition assessment was established in general rolling bearings, nevertheless, relatively less literatures, in regard to the health condition assessment of slewing bearing, were published in past. Real time health condi...
متن کاملEvaluation of clustering algorithms for financial risk analysis using MCDM methods
The evaluation of clustering algorithms is intrinsically difficult because of the lack of objective measures. Since the evaluation of clustering algorithms normally involves multiple criteria, it can be modeled as a multiple criteria decision making (MCDM) problem. This paper presents an MCDM-based approach to rank a selection of popular clustering algorithms in the domain of financial risk ana...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011